TRECVID2020@UEC

Sosuke Mizuno Yanai Keiji
The University of Electro-Communications

INS: Instance Search

Method

A. Person Retrieval

- (1) Detect faces in each frame by RetinaFace[1].
- (2)Extract the facial feature by ArcFace[2].
- (3)Calculate the similarity score.

B. Action Retrieval

(1) Emotion-related action retrieval.

Some action classes, such as "crying", can be identified only by recognizing facial expressions by the method in [3].

(2) Human-Object interaction retrieval.

Some of the action classes are related to human-object interaction, such as "holding phone". The interaction score is the ratio of the number of object around a human counts to the number of frames. We used EfficientDet, which was pre-trained in MS-COCO.

(3) General action retrieval.

Other general classes are recognized by SlowFast. We fine-tune the SlowFast pre-trained by Kinetics-600 with INS data.

Fig1. The overall of INS method

Results

- UEC-1: the proposed method
- UEC-2: random selection

We can see that our results are less accurate than other teams.

→ This may be due to the failure of the fine-tune models in the general action category, because we use only the videos provided by NIST and some of the Kinetics.

→ We believe that it is necessary to extract action features

from the detected person's bounding box.

Type		Team	mAP	action	mAP
F	Е	PKU-WICT	0.252	laughing	0.080
		WHU-NERCMS	0.151	crying	0.051
	A	PKU-WICT	0.247	holding phone	0.049
		BUPT-MCPRL	0.142		
		NII-UIT	0.091	sit on couch	0.014
		UEC-1(ours)	0.022	smoking cigarette	0.008
		UEC-2(ours)	0.0	drinking	0.006
I	Е	PKU-WICT	0.368		
				holding paper	0.005
				holding cloth	0.004
				go up down stairs	0.002

ActEV: Activity in Extended Video

Method

A. Proposal generation

- (1)Detect humans and cars by Faster R-CNN.
- (2) Generate a tracking trail by deep SORT[4].

B. Activity Classification

- (1)Extract features by 3D ResNet-101.
- (2)Temporal localization by bi-directional LSTM.

C. Post-processing

We employ a spatially-temporal NMS to avoid overlapping candidates.

Results

- UEC-Test: the proposed method
- UEC: re-tracking the bounding box obtained from the proposed method

We find that our method is less accurate than other methods

- → This may due to the fact that our method is hardly able to detect action classes with little training data.
- → Another reason could be the poor recognition of action classes where person and vehicles interact with each other.

Fig3. ActEV evaluation results.

References

- [1] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou. RetinaFace: Single-stage dense face localization in the wild. In arXiv:1905.00641, 2019.
- [2] J. Deng, J. Guo, N. Xue, and S. Zaferiou. ArcFace: Additive angular margin loss for deep face recognition. In *Proc. of IEEE Computer Vision and Pattern Recognition*, 2019.
- [3] L Pham and T. A. Tran. Facial expression recognition using residual masking network. https://github.com/phamquiluan/ResidualMaskingNetwork. 2020. [4] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with a deep association metric. In 2017 IEEE International Conference on Image Processing (ICIP), pages 3645–3649. IEEE, 2017.